
1

Reflective Memory vs
Traditional Networking

J-Squared Technologies Inc.
REFLECTIVE MEMORY DIVISION

Toll Free: 1.855.365.2188

Local: 1.613.592.9540

rfm@jsquared.com

Toll Free: 1.855.365.2188 Local: 1.613.592.9540 Email: rfm@jsquared.com reflectivememory.com

2

A Reflective Memory network is a special type of shared
memory system designed to enable multiple, separate

computers to share a common set of data.

What is REFLECTIVE MEMORY?

Reflective memory networks place an independent copy of the entire shared memory set in each attached system.
Each attached system has dull, unrestricted rights to access and change this set of local data at the full speed of
writing to local memory.

When data is written to the local copy of Reflective Memory,
high speed logic simultaneously sends it to the next node on
the ring network. Each subsequent node simultaneously writes
this new data to its local copy and sends it on to the next node
on the ring. When the message arrives back at the originating
node, it is removed from the network and, depending on the
specific hardware and number or nodes, every computer on
the network has the same data at the same address within a
few microseconds.

Local processors can read this data at any time without a
network access. In this scheme, each computer always has an
up to date copy of the shared memory set. In the four-node
example shown, it takes 2.1 µs for all computer to receive the
data that was written to Reflective Memory.*

DETERMINISTIC DATA TRANSFERS
Reflective Memory is a hardware-based network. All data
transferred to a node is stored in local memory and automati-
cally sequenced out to all the other nodes’ memory. There are
no software delays and minimal hardware delays associated in
the data transfer. Any latency is imposed at the hardware level
and can be predetermined within a very small window of best-
to- worst case latency. The determinism of Reflective Memory,
the guaranteed time in which communication between two or
more nodes is completed, allows system designers to build ef-
fective real-time LANs that can guarantee data delivery within
a tight window of time. This enables guaranteed scheduling of
sequential actions and ensures that data is not lost.

Figure 1 Reflective Memory provides
very low latency between nodes.

Figure 2 Reflective Memory Ring Architecture connects up
to 256 separate network nodes in real time

* This latency is calculated assuming no network traffic, short cable lengths
and the largest packet size is possible. Cable length and network traffic can

cause the latency to increase, but as long as the bandwidth of the network
is not exceeded, the latency should not increase significantly.

3

Why CHOOSE REFLECTIVE MEMORY?

Reflective Memory LANs or Real-time Networks are usually constructed because the designer has needs or problems
that are solved by one or more of the following Reflective Memory board characteristics:

• DETERMINISTIC DATA TRANSFERS

• HIGH-SPEED PERFORMANCE

• EASE OF USE

• OPERATING SYSTEM AND PROCESSOR INDEPENDENCE

• ECONOMICS AND AVAILABLE TIME-TO-BUILD SYSTEMS

• ADVANTAGES OVER STANDARD LAN TECHNOLOGIES

WEAKNESSES OF TRADITIONAL NETWORKING
FOR DISTRIBUTED COMPUTERS
There are many ways to transfer messages or large blocks of data between systems, and each method has its own
unique capabilities and limitations. The simplest data transfer technique uses bus repeaters to transfer the CPU read
and write signals from one computer to the backplane of another computer. A second technique, Direct Memory
Access (DMA), moves data between the global memories of two or more computers. DMA requires backplane control
from the local processor. Other methods include message passing via a single shared-global RAM, and standard
LANs like Ethernet and Gigabit Ethernet.

BUS REPEATERS
A bus repeater connects the CPU backplane of one
computer to the CPU backplane of another computer
as shown. This connection allows message passing
between CPUs, and also allows each CPU to access
resources in the other computer. Since bus transfers may
occur at any time and in any direction between comput-
ers 1 and 2, a bus arbitration cycle is required on every
read or write cycle between the two systems.

The problem with this approach is that each time a CPU
wants to access a resource in a remote backplane, it
must first request access to the remote backplane, and then wait until that
access is granted. Depending on the priority level and type of other bus activity taking place in the remote backplane,
this might take anywhere from several microseconds to several milliseconds. This overhead delay not only impedes
the data transfer, but it also ties up the requesting backplane, blocking any other activity in this backplane until the
remote access is completed. As the systems spend more and more time waiting for each other, the compounded
latency delays become prohibitive for real-time applications.

Figure 3 Bus Repeater connection

4

DIRECT MEMORY ACCESS (DMA)
Bus repeaters can be very efficient for moving small amounts of data (such as bytes or words) from backplane to
backplane. However, in many distributed multiprocessing systems larger amounts of data are exchanged between
the various CPUs in the form of parameter blocks. These blocks of data can be moved more efficiently by using DMA
controller boards, like the one shown.

In these connections, the CPU in
each system initializes the ad-
dress register and the size reg-
ister on its own DMA controller
board. In this process, the address
register on the originating DMA
controller board indicates where
the DMA controller should be-
gin reading the parameter block
from global memory. The address
register on the destination DMA
controller board indicates where
the DMA controller should begin
storing the parameter block. Once
the two CPUs have initialized
their respective DMA registers,
the transfer is automatic, and the
CPUs can direct their attention to
other activities.

DMA transfers can occur at a very high rate of speed. That is, once all the above
overhead programming and setup has occurred. Both the originating and destination computers must have active
involvement in the data transfer. Most importantly, every time a block transfer is completed, both processors must
be interrupted so they can reconfigure the DMA controller to prepare for the next transfer. While these DMA transfers
are occurring, each local processor must share the available bus bandwidth with its DMA board. This setup can be
efficient in certain circumstances, but frequent updates require frequent interrupts that impose latency. Splitting of
bus bandwidth between the DMA and the main application can create a data bottleneck for the host application, as
well as the DMA process.

Figure 4 DMA Controller connection

Why CHOOSE REFLECTIVE MEMORY?

5

MESSAGE PASSING VIA SHARED (GLOBAL) MEMORY
A third configuration would be for two or more computers to share a single set of global memory as illustrated. A typ-
ical shared global memory scenario would be two or more computers residing in the same backplane-based chassis
(usually VMEbus or CompactPCI). Each of these computers would have their own local memory where accesses
occur at the full speed of the processor. The computers could then communicate and share data with each other via
a global memory set resident in the same backplane by utilizing a pre-established message protocol scheme.

In this type of system, the global memory is basically a single-ported memory shared among several computers
and, while it may be accessible to all computers residing within the same chassis, access to this resource must be
arbitrated. Also, inter-processor communications occur at the speed of the bus memory card combination, which is
typically much slower than accessing local memory. The individual computers end up competing for the one scarce
resource that facilitates the sharing of information and even when a processor has free access to the shared memo-
ry, it is at a lowered speed.

The communication becomes more cumbersome when externally distributed computers are connected into the sin-
gle-ported global memory via repeaters, DMAs, or LANs. The total data latency may become compounded as each
processor must wait its turn to access the memory (both in writing in new data and in receiving messages from other
computers via the global memory). In this scenario data latency (which can be broadly defined as the time it takes
before all computers can gain access to new data) can quickly spiral out of control.

TRADITIONAL
LOCAL AREA NETWORKS (LANS)
The most familiar method of sharing data between computers
is to rely on conventional networking standards such as 10/100
or Gigabit Ethernet. With this approach, the computers may
be physically separated and connected via a network, and a
common database is maintained from data sent through that
standard network. This allows for wider connectivity and a more
standardized communications approach, but adds considerable
overhead for data transmissions. Also, because of Ethernet’s
arbitration schemes, determinism (the ability to define a time
window in which communication will become available at a spe-
cific place on the network) is lost.

The communication overhead of a LAN protocol like Ethernet adds anoth-
er layer of complexity while decreasing the usable data payload. Once a system grows beyond a few nodes, that
overhead can outweigh the advantage provided by the shared memory scheme. Like the other examples, this is still
a single-ported memory approach and only one node may update the database at any one time. While LAN technolo-
gies enable developers to distribute their systems, they do not address the bottleneck of accessing the single-ported
memory, which is still essentially an arbitrated resource.

Figure 5 Global Shared Memory Architecture

Why CHOOSE REFLECTIVE MEMORY?

6

Gigabit ETHERNET EXAMPLE

The following example shows the process required to share data between two computers. These steps would
hold true for regular Ethernet, as well as Gigabit Ethernet LANs. In this example, Computer A collects raw data
samples from ten different types of sensors. With 20 sensors of each type, there are a total of 200 sensors.
This data is stored in computer A’s own memory, then transferred to computer B for processing and display
via a Graphical User Interface (GUI).

1. Computer A collects the data for each sensor type at different intervals; there-
fore, it does not send a fixed format data stream of all the data since this is too
inefficient. Instead, Computer A sends the data to Computer B by sensor type. To
accomplish this, Computer A must include the sensor type and number (1-20) with
the sensor’s data so that Computer B knows how to process the incoming data.

2. Between these two computers, there must be an application that encodes and
decodes these sensor type/number/data messages. It is clear that Computer A
would have to know how to encode ten different types of messages, one for each
type of sensor’s data, and Computer B would have to know how to decode ten dif-
ferent messages. Computer B would then act on the contents of those messages.

3. Computer A, after constructing a sensor type/number/data message, must
transmit that message to Computer B. It does this by relying on the network hard-
ware and the hardware’s driver software. Computer A passes these constructed
messages to the network adapter. The network adapter then reformats this mes-
sage into data packets for transmitting through the network. The adapter hardware
has to add information such as routing addresses, error checking information, and
other networking protocols so that the receiving hardware interface on Computer B
gets the information and can check its validity.

4. Upon receiving the information, the network adapter hardware in Computer B
reads and interprets the data packets to verify that the packets arrived intact and
error free. The hardware adapter then notifies the computer that the transmission
data is ready to be placed in memory. Computer B then decodes this type/number/
data message constructed by Computer A. Computer B must decode this message
to separate the sensor type and sensor number from the actual sensor’s data.

5. Computer B determines the sensor type and number through various case or
case-like statements to determine which particular sensor type this message
contains, and it must also determine which of the 20 sensors the data came from.
After this information is extracted, then and only then, can the actual data originat-
ing from Computer A be written into the memory of Computer B so that the actual
processing of this data may begin.

The same example implemented with
Reflective Memory:

1. Computer A places the raw data from each of the
sensors into the memory on its Reflective Memory
board. Each sensor has its own unique address within
the memory.

2. Reflective Memory automatically replicates this
data to Computer B’s Reflective Memory board.

3. Computer B now has the data available in its local
memory, and may begin processing this data.

In summary, standard LANs have
several shortcomings when real-time
communication is required:

 » Transfer rates are low.

 » Data latency is hard to predict and is
typically too large for real-time
 distributed multiprocessing systems.

 » Layered protocol software consumes
 too much valuable processor time.

7

Reflective Memory 5565/ 5565RC 10/100 Ethernet Gigabit Ethernet
Network Characteristics 5565PIORC

Transmission Speed 2.1 GBaud/s 10/100 Mbit/s 1000 Mbit/s

Data Transfer Speed 170 MB/s 1/10 MB/s 100 MB/s

Endian Data Conversion Yes No No

Software Transparent Yes No No

Media Fiber Optic Coax, UTP Fiber Optic

Topology Ring Ring, Hub Ring

Network Data Transmission/ Yes No No
Reception Is Deterministic?
Network Transfer Scheme Data Insertion Carrier Sense Multiple Token Passing
 Access/ Collision Detect

Memory Mapped Access to Yes No - Messaging Application No - Messaging Application
Shared Data? Application Must Be Built Must Be Built

Application Must Be No Yes - Messaging Application Yes - Messaging Application
Constructed to Share Data?
Application Must No Yes Yes
Encode/Decode Messages?
Application Must Perform Error No Yes Yes
Check/Handling Retransmits, etc.?
CPU Overhead to Support No Yes Yes
Shared Data Functionality?
CPU Overhead Required at No Yes Yes
Transmission Hardware Interface?

SUMMARY
Reflective Memory is an optimal way to share data in time-critical applications ranging from data acquisition and process
control to advanced simulation. Reflective Memory networks provide a real-time networking capability that surpasses
most communications technologies for low latency and deterministic performance. Reflective Memory networks con-
nect systems with minimal update delays and no access restrictions, to enable multiple, remotely located nodes to share
a single data set in real time. The following table summarizes key technology characteristics by media type.

Toll Free: 1.855.365.2188
Local: 1.613.592.9540

Email: rfm@jsquared.com
reflectivememory.com

Why CHOOSE REFLECTIVE MEMORY?

TEST STANDARDS:

MIL-STD-167
MIL-STD-810
MIL-STD-108E
MIL-E-5400T
MIL-STD-2164
MIL-S-901D

MIL-STD-461G
60068-2
60529
60945
60598-2-3

• Small Form Factor Rugged
 Computers/Mission Computers

• Ruggedized Servers

• Ruggedized Switches

• Ruggedized Displays

